
Tetrahedron Letters 48 (2007) 1703–1706
Chiral P,O-ligands derived from N,O-phenylene prolinols
for palladium-catalyzed asymmetric allylic alkylation
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Abstract—CuI-catalyzed N,O-arylation of (S)-prolinols and 1-bromo-2-iodobenzene afforded cyclic N,O-(1,2-phenylene)prolinols,
and subsequent ortho-lithiation and phosphination provided a new type of chiral P,O-ligands. Their palladium-complex-catalyzed
asymmetric allylic alkylation of dimethyl malonate with 1,3-diphenyl 2-propenyl acetate gave high yields and good
enantioselectivities.
� 2007 Elsevier Ltd. All rights reserved.
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The development of effective and versatile chiral P,N-
ligands with sterically and electronically unsymmetric
nature for transition metal catalysis has been a fruitful
endeavor,1 while the exploration for chiral P,O-ligands
has received much less attention.2 The oxygen function-
ality in a P,O-ligand was often regarded as the spectator
or a hemilabile coordinating site.3 For example, CAMP
1, MOP 2 and semi-ESPHOS 3 were used as chiral
mono-phosphine ligands with the methoxy groups being
nonchelating bystanders.4 In particular, X-ray studies
revealed that the palladium-complex of MOP-type
ligands showed unique C–Pd r-bonding, g2-binding,
or diene-bridging modes rather than the P,O-bidentate
coordination.5
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Exceptionally, some mixed phosphine–phosphine oxi-
des6 and phosphinocarboxylic acids7 as ligands were
reported working in P,O-chelating mode. A few other
types of hemilabile bidentate P,O-ligands were also
documented. Examples are (S)-prolinol-derived amido-
mono-phosphine ligand 4 for a Rh-catalyzed addition
reaction,8 ligand 5 with a chiral amine auxiliary for a
Pd–catalyzed allylic alkylation,9 and semi-DuPHOS-
type ligand 6 for a Ni-catalyzed hydrovinylation.10

Recently, we reported an interesting compound of the
N,O-(1,2-phenylene)prolinol structure.11 We wonder
that ortho-lithiation of this compound, followed by
phosphination, would produce a chiral P,O-ligand for
asymmetric catalysis (Scheme 1). Our interest in (S)-
prolinol-derived chiral ligands promoted us to try the
CuI-catalyzed coupling of (S)-prolinols with 1-bromo-
2-iodobenzene.12 However, an unexpected intramolecu-
lar N,O-arylation was observed in addition to the
normal N-arylation (Scheme 2).13

The results are shown in Table 1. In the presence of
2.5 mol % CuI and 2 equiv of NaOH, mixing of 7a
Li PPh2

Scheme 1.

mailto:jiangb@ mail.sioc.ac.cn
mailto:jiangb@ mail.sioc.ac.cn


CuI (2.5%)
NaOH (2 eq)

Br
N
H

+

R I
N

Br
N

O+

9a, b, c, d 10a, b, c

R

R

OH
R OH

R
R

i-PrOH, 90 oC8

7a, R = H  7b, R = Me
7c, R = Et 7d, R = Ph

Scheme 2.

Table 1. CuI-catalyzed N-arylation and N,O-arylation

Entry Prolinol Time (h) Yield of 9a (%) Yield of 10a (%)

1 7a 12 23 62
2 7a 24 5 78
3b 7a 12 57 13
4 7b 24 36 31
5 7c 24 50 3
6 7c 50 —c 25
7 7d 3 60 None
8 7d 20 75 None

a Isolated yields.
b NaOH (1 equiv).
c Debromation occurred.

Table 2. Pd-catalyzed asymmetric allylic alkylationa

Ph Ph

OAc
+

CO2Me

CO2Me cat. [Pd]/L*

BSA, LiOAc

Ph Ph

MeO2C CO2Me
12 13 14

Entry Solvent Temperature Time (h) Yieldb (%) eec (%)

1d THF rt 3 99 56
2e THF rt 1 99 58
3 CH2Cl2 rt 3 99 51
4 PhMe rt 24 75 43
5 MeCN rt 24 86 37
6 Et2O rt 0.5 98 41
7 THF 0 �C 8 99 66
8f THF rt 3 99 83
9f THF 0 �C 48 93 90

a [Pd(g3-C3H5)Cl]2/11a/LiOAc/12/13/BSA = 2:6:4:100:300:300.
b Isolated yields.
c Determined by chiral HPLC, and all the products are (R)-

configuration.
d [Pd(g3-C3H5)Cl]2/11a = 2:4.
e [Pd(g3-C3H5)Cl]2/11a = 2:8.
f Compound 11b as ligand.
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and 8 in i-PrOH with heating for 12 h afforded the nor-
mal N-arylation product 9a in 23% yield along with 62%
yield of a cyclic compound 10a (entry 1).14 As expected,
the yield of 10a was increased after longer reaction time,
while a shorter duration and using less base decreased
the N,O-arylation (entries 2 and 3). The N,O-arylation
product 10b was obtained in 31% yield (entry 4). Despite
the hindrance of cyclization to 10c, a 25% yield could be
attained with prolonged reaction time, albeit debroma-
tion occurred in the meantime (entries 5 and 6). The
N-arylation of 7d was much rapid, affording 60% yield
in 3 h, but the diphenyl substituted tertiary alcohol
was totally inert toward intramolecular O-arylation
(entries 7 and 8).

Next we performed ortho-lithiation and phosphination
of the cyclic N,O-(1,2-phenylene)prolinols. It was
known that the alkyloxy substituent on the aromatic
ring (ROAr) was a superior directing group than an
alkylamino moiety (R2NAr).15 The oxygen-directed
ortho-lithiation of 10a–c with n-BuLi/TMEDA, fol-
lowed by addition of Ph2PCl, afforded the phosphin-
ation products 11a and 11b in 34% and 44% yields,
respectively, with 40–50% recovery of 10a and 10b
(Scheme 3).16 Unfortunately, the lithiation and phosph-
ination of 10c were unsuccessful. Only the starting mate-
rial was recovered upon quenching the reaction.17

With 11a and 11b in hand, we set out to investigate their
application as chiral P,O-ligands in Pd-catalyzed allylic
10a, R = H (49% recovered)
10b, R = Me (43% recovered)
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substitution of 1,3-diphenyl-2-propenyl acetates 12 with
13 in the presence of BSA/LiOAc.18 The details are
shown in Table 2.19 It is noteworthy that comparable re-
sults (quantitative yields and 56–58% ees) were obtained
in THF regardless of 2:1 or 4:1 ratios for the phosphine
to the dimeric palladium source, albeit reaction under
the latter conditions was slightly accelerated (entries 1
and 2). It is probable that the catalyst formed in situ
worked in a 1:1 bidentate P,O-ligand to palladium coor-
dination mode. Thus, a 1.5:1 ratio was used in the rest of
our study. The reaction carried out in CH2Cl2 gave 99%
yield with somewhat lowered 51% ee (entry 3). Inferior
results were obtained in PhMe and MeCN (entries 4
and 5). Much rapid conversion was observed in ether,
but the enantioselectivity was only 41% ee (entry 6).
The optical yield was increased to 66% ee after an 8 h
reaction time at 0 �C (entry 7). Switching the ligand to
11b, a quantitative yield and 83% ee for 14 were attained
in 3 h at rt, and it took 48 h to achieve 93% yield with
90% ee in THF at 0 �C (entries 8 and 9).

All products are determined as (R)-configuration by
optical rotation measurement and chiral HPLC analy-
sis.20 On the basis of this output, a plausible mechanism
is proposed (Scheme 4). The P,O-ligand 11b has a rela-
tively rigid conformation. Upon analysis of the stereo-
electronics, the phenolic ether oxygen has two
discriminable lone pairs of electrons. The axial-oriented
lone pair tends to be in conjunction with the benzene
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backbone, while the quasi-equatorial lone pair might ex-
hibit distinct donating and coordinating characteristics.
Assuming a bidentate chelating mode, the preferential
attack of deprotonated malonate trans to the phospho-
rous atom at a W-type 1,3-diphenyl allyl complex would
lead to an (R)-product.

To conclude, the chiral P,O-ligands have been derived
from N,O-(1,2-phenylene)prolinols, which have been
generated by the N,O-arylation of (S)-prolinols and 1-
bromo-2-iodo-benzene with CuI-catalysis. Their use in
Pd-catalyzed asymmetric allylic alkylation of malonate
with 1,3-dipenyl 2-propenyl acetate has been demon-
strated, and a P,O-bidentate working mode is proposed
to rationale the stereochemical outcome.
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